Approximation of Stochastic Partial Differential Equations by a Kernel-based Collocation Method

Qi Ye

Department of Applied Mathematics
Illinois Institute of Technology

Joint work with Prof. I. Cialenco and Prof. G. E. Fasshauer

February 2012
Monographs

- Radial Basis Functions
- Scattered Data Approximation
- Meshfree Approximation Methods with MATLAB
- Sobolev Spaces
- The Analysis of Linear Partial Differential Operators I
- Spline Models for Observational Data
- Reproducing Kernel Hilbert Spaces in Probability and Statistics
- Support Vector Machines
- Numerical Solution of Stochastic Differential Equations
Outline

1. Introduction
2. Background
3. Kernel-based Collocation Methods
4. Numerical Examples
5. Acknowledgments
Parabolic Stochastic Equations \implies Elliptic Stochastic Equations

Here, we only consider the simple high-dimensional elliptic SPDE

$$\begin{cases}
\Delta u = f + \xi, & \text{in } \mathcal{D} \subset \mathbb{R}^d, \\
u = 0, & \text{on } \partial\mathcal{D},
\end{cases}$$

where

- $\Delta = \sum_{j=1}^{d} \frac{\partial^2}{\partial x_j^2}$ is the Laplacian operator,
- suppose that $u \in$ Sobolev space $H^m(\mathcal{D})$ with $m > 2 + d/2$ a.s.,
- $f : \mathcal{D} \to \mathbb{R}$ is a deterministic function,
- $\xi : \mathcal{D} \times \Omega_\xi \to \mathbb{R}$ is a Gaussian field with mean zero and covariance kernel $W : \mathcal{D} \times \mathcal{D} \to \mathbb{R}$ defined on a probability space $(\Omega_\xi, \mathcal{F}_\xi, \mathbb{P}_\xi)$, i.e.,

$$E(\xi_x) = 0, \quad Cov(\xi_x, \xi_y) = W(x, y).$$
The proposed numerical method for solving a parabolic SPDE can be described as follows:

1. We choose a reproducing kernel

\[K : D \times D \rightarrow \mathbb{R} \]

whose reproducing kernel Hilbert space \(H_K(D) \) is embedded into \(H^m(D) \).

\[\begin{align*}
\text{Noise Covariance Kernel } W & \quad \rightarrow \quad \text{Smoothness of Exact Solution } u \\
\downarrow & \quad \downarrow \\
\text{Convergent Rates} & \quad \leftarrow \quad \text{Reproducing Kernel } K
\end{align*} \]
We simulate the Gaussian field with covariance structure W at a finite collection of predetermined collocation points

$$X_D := \{x_1, \cdots, x_N\} \subset D, \quad X_{\partial D} := \{x_{N+1}, \cdots, x_{N+M}\} \subset \partial D,$$

i.e.,

$$y_j := f(x_j) + \xi_{x_j}, \quad j = 1, \cdots, N, \quad y_{N+j} := 0, \quad j = 1, \cdots, M,$$

and

$$\xi := (\xi_{x_1}, \cdots, \xi_{x_N}) \sim \mathcal{N}(0, W), \quad W := (W(x_j, x_k))_{j,k=1}^{N,N}.$$

We also let the random vector

$$y_\xi := (y_1, \cdots, y_{N+M})^T.$$
We also define its integral-type kernel

\[K(x, y) := \int_D K(x, z)K(y, z)dz, \quad K \in \mathcal{H}^{m,m}(D \times D). \]

The kernel-based collocation solution is written as

\[
\begin{align*}
 u(x) \approx \hat{u}(x) & := \sum_{k=1}^{N} c_k \Delta_2^* K(x, x_k) + \sum_{k=1}^{M} c_{N+k} \Delta^* K(x, x_{N+k}), \\
 \text{where the unknown random coefficients} \quad c & := (c_1, \cdots, c_{N+M})^T \\
 \text{are obtained by solving a random system of linear equations, i.e.,} \\
 \Delta^* c & = y_\xi.
\end{align*}
\]
Advantages

- The **kernel-based** collocation method is a **meshfree** approximation method. It does not require an underlying triangular mesh as the **Galerkin finite element** method does.

- The **kernel-based** collocation method can be applied to a **high-dimensional** domain \(D \) with **complex** boundary \(\partial D \).

- To obtain the **truncated** Gaussian noise \(\xi^n \) for the **finite element** method, it is difficult for us to compute the **eigenvalues** and **eigenfunctions** of the noise covariance kernel \(W \). For the **kernel-based** collocation method we need not worry about this issue.

- Once the **reproducing kernel** is fixed, the error of the collocation solution only depends on the **collocation points**.
Given a finite element basis ϕ, we shall compute the right-hand side for the Galerkin finite element methods.

- **Popular Methods:**

$$
\int_D \xi_x \phi(x) \, dx \approx \int_D \xi^n_x \phi(x) \, dx = \sum_{k=1}^n \zeta_k \int_D \sqrt{\lambda_k} e_k(x) \phi(x) \, dx,
$$

where the truncated Gaussian noise

$$
\xi_x \approx \xi^n_x = \sum_{k=1}^n \zeta_k \sqrt{\lambda_k} e_k(x), \quad \zeta_1, \ldots, \zeta_n \sim \text{i.i.d.}\, \mathcal{N}(0, 1),
$$

and

$$
W(x, y) \approx W^n(x, y) = \sum_{k=1}^n \lambda_k e_k(x) e_k(y).
$$
Monte Carlo Methods:
For each fixed sample path $\omega \in \Omega_\xi$, $\xi_x(\omega)$ is a function defined on \mathcal{D}. However, we do not know its exact form. We can only use Monte Carlo methods to approximate the right-hand side, i.e.,

$$\int_{\mathcal{D}} \xi_x \phi(x) dx \approx \sum_{j=1}^{N} \xi_{x_j} \phi(x_j).$$

Kernel-based Methods:

$$\xi_x \approx \hat{\xi}_x := w(x)^T W^{-1} \xi,$$

where

$$w(x) := (W(x, x_1), \cdots, W(x, x_N))^T, \quad W := (W(x_j, x_k))_{j,k=1}^{N,N}.$$
According to [Cialenco, Fasshauer and Ye 2011 SPDE, Theorem 3.1], for a given $\mu \in H_K(D)$, there exists a probability measure \mathbb{P}^μ defined on

$$(\Omega_K, \mathcal{F}_K) = (H_K(D), \mathcal{B}(H_K(D)))$$

such that the stochastic fields $\Delta S, S$ given by

$$\Delta S_x(\omega) = \Delta S(x, \omega) := (\Delta \omega)(x), \quad x \in D, \quad \omega \in \Omega_K = H_K(D),$$

$$S_x(\omega) = S(x, \omega) := \omega(x), \quad x \in D \cup \partial D, \quad \omega \in \Omega_K = H_K(D),$$

are Gaussian with means $\Delta \mu$, μ and covariance kernels $\Delta_1 \Delta_2 K, K$ defined on $(\Omega_K, \mathcal{F}_K, \mathbb{P}^\mu)$, respectively.

For any fixed $z \in \mathbb{R}$, we let

$$\mathcal{E}_x(z) := \{ \omega \in \Omega_K : \omega(x) = z \} = \{ \omega \in \Omega_K : S_x(\omega) = z \}.$$
[Cialenco, Fasshauer and Ye 2011 SPDE, Corollary 3.2], shows that the random vector

\[S := (\Delta S_{x_1}, \cdots, \Delta S_{x_N}, S_{x_{N+1}}, \cdots, S_{x_{N+M}}) \sim \mathcal{N}(m^\mu, K), \]

where

\[m^\mu := (\Delta \mu(x_1), \cdots, \Delta \mu(x_N), \mu(x_{N+1}), \cdots, \mu(x_{N+M}))^T \]

\[K := \begin{pmatrix} \Delta_1 \Delta_2^* K(x_j, x_k)_{j,k=1}^{N,N} & (\Delta_1^* K(x_j, x_{N+k}))_{j,k=1}^{N,M} \\ (\Delta_2^* K(x_{N+j}, x_k))_{j,k=1}^{M,N} & (K(x_{N+j}, x_{N+k}))_{j,k=1}^{M,M} \end{pmatrix}. \]

For any given \(y = (y_1, \cdots, y_{N+M})^T \in \mathbb{R}^{N+M} \), we let

\[\mathcal{E}_X(y) := \{ \omega \in \Omega_K : \Delta \omega(x_1) = y_1, \ldots, \omega(x_{N+M}) = y_{N+M} \} \]

\[= \{ \omega \in \Omega_K : S(\omega) = y \}. \]
For each fixed $x \in D$ and $\omega_2 \in \Omega_\xi$, we obtain the "optimal" estimator

$$u(x, \omega_2) \approx \hat{u}(x, \omega_2) = \arg\max_{z \in \mathbb{R}} \sup_{\mu \in H_K(D)} \mathbb{P}_\xi^\mu \left(\mathcal{E}_x(z) \times \Omega_\xi \mid \mathcal{E}_x \left(y_\xi(\omega_2) \right) \right),$$

$$= \arg\max_{z \in \mathbb{R}} \sup_{\mu \in H_K(D)} \mathbb{P}_\xi^\mu \left(S_x = z \mid S = y_\xi(\omega_2) \right),$$

$$= \arg\max_{z \in \mathbb{R}} \sup_{\mu \in H_K(D)} \rho_x^\mu(z \mid y_\xi(\omega_2)),$$

$$= k(x)^T K^{-1} y_\xi(\omega_2),$$

where $k(x) := (\Delta_2^* K(x, x_1), \cdots, \Delta_2^* K(x, x_{N+M}))^T$ and

$$\Omega_{K\xi} := \Omega_K \times \Omega_\xi, \quad \mathcal{F}_{K\xi} := \mathcal{F}_K \otimes \mathcal{F}_\xi, \quad \mathbb{P}_\xi^\mu := \mathbb{P}^\mu \otimes \mathbb{P}_\xi,$$

so that ΔS, S and ξ can be extended to the product space while preserving the original probability distributional properties.
Error Bound Analysis

For any $\epsilon > 0$, we define

$$E_x^\epsilon := \left\{ \omega_1 \times \omega_2 \in \Omega_K \times \Omega_\xi : |\omega_1(x) - \hat{u}(x, \omega_2)| \geq \epsilon, \right\}$$

s.t. $\Delta \omega_1(x_1) = y_1(\omega_2), \ldots, \omega_1(x_{N+M}) = y_{N+M}(\omega_2)$$.$

Let the fill distance

$$h_x := \sup_{x \in D} \min_{1 \leq j \leq N+M} \|x - x_j\|_2.$$
We can deduce that

$$\sup_{\mu \in H_K(D)} \mathbb{P}^\mu_\xi(\mathcal{E}^\epsilon_x) = \mathcal{O}\left(\frac{h^m x^{-d/2}}{\epsilon}\right),$$

where m is the order of the Sobolev space corresponded to the exact solution of the SPDE.

Since $|u(x, \omega_2) - \hat{u}(x, \omega_2)| \geq \epsilon$ if and only if $u \in \mathcal{E}^\epsilon_x$, we have

$$\sup_{\mu \in H_K(D)} \mathbb{P}^\mu_\xi (\|u - \hat{u}\|_{L_\infty(D)} \geq \epsilon) \leq \sup_{\mu \in H_K(D), x \in D} \mathbb{P}^\mu_\xi (\mathcal{E}^\epsilon_x) \to 0,$$

when $h_x \to 0.$
Outline

1. Introduction
2. Background
3. Kernel-based Collocation Methods
4. Numerical Examples
5. Acknowledgments
Let the domain
\[D := (0, 1)^2 \subset \mathbb{R}^2. \]

We choose the deterministic function
\[f(x) := -2\pi^2 \sin(\pi x_1) \sin(\pi x_2) - 8\pi^2 \sin(2\pi x_1) \sin(2\pi x_2), \]
and the covariance kernel of the Gaussian noise \(\xi \) to be
\[W(x, y) := 4\pi^4 \sin(\pi x_1) \sin(\pi x_2) \sin(\pi y_1) \sin(\pi y_2) \\ + 16\pi^4 \sin(2\pi x_1) \sin(2\pi x_2) \sin(2\pi y_1) \sin(2\pi y_2). \]

Then the exact solution of the above elliptic SPDE has the form
\[u(x) := \sin(\pi x_1) \sin(\pi x_2) + \sin(2\pi x_1) \sin(2\pi x_2) \\ + \zeta_1 \sin(\pi x_1) \sin(\pi x_2) + \frac{\zeta_2}{2} \sin(2\pi x_1) \sin(2\pi x_2), \]
where \(\zeta_1, \zeta_2 \sim \text{i.i.d. } \mathcal{N}(0, 1). \)
For the collocation methods, we use the C^4-Matérn function with shape parameter $\theta > 0$

$$g_\theta(r) := (3 + 3\theta r + \theta^2 r^2)e^{-\theta r}, \quad r > 0,$$

to construct the reproducing kernel (Sobolev-spline kernel)

$$K_\theta(x, y) := g_\theta(\|x - y\|_2).$$

According to [Fasshauer and Ye 2011 Distributional Operators, Fasshauer and Ye 2011 Differential and Boundary Operators], we can deduce that

$$\mathcal{H}_K(\mathcal{D}) \cong \mathcal{H}^{3+1/2}(\mathcal{D}) \subset C^2(\mathcal{D}).$$
Numerical Examples

Stochastic Laplace’s Equations

Figure: $N = 65$, $M = 28$ and $\theta = 0.9$
Figure: Convergence of Mean and Variance

- Mean, $\theta = 0.9$
- Mean, $\theta = 1.9$
- Mean, $\theta = 2.9$
- Variance, $\theta = 0.9$
- Variance, $\theta = 1.9$
- Variance, $\theta = 2.9$
Outline

1 Introduction

2 Background

3 Kernel-based Collocation Methods

4 Numerical Examples

5 Acknowledgments
Thank You for the invitation and the NSF support from Prof. Owen.
References I

R. A. Adams and J. J. F. Fournier,
Sobolev Spaces (2nd Ed.),

A. Berlinet and C. Thomas-Agnan,
Reproducing Kernel Hilbert Spaces in Probability and Statistics,

M. D. Buhmann,
Radial Basis Functions: Theory and Implementations,

G. E. Fasshauer,
Meshfree Approximation Methods with MATLAB,
References II

L. Hörmander,
The analysis of linear partial differential operators I,

P. E. Kloeden and E. Platen
Numerical Solution of Stochastic Differential Equations, Vol. 23,

B. Øksendal

I. Steinwart and A. Christmann,
Support Vector Machines,
References III

G. Wahba,
Spline Models for Observational Data,

H. Wendland,
Scattered Data Approximation,

G. E. Fasshauer and Q. Ye,
Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operator,
Numerische Mathematik, Volume 119, Number 3, Pages 585-611, 2011.
References IV

S. Koutsourelakis and J. Warner
Learning Solutions to Multiscale Elliptic Problems with Gaussian Process Models,
Research report at Cornell University, 2009.

Q. Ye,
Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Differential Operator,