Efficient rare-event simulation for sums of dependent random variables

Leonardo Rojas-Nandayapa
joint work with José Blanchet

February 13, 2012
MCQMC
UNSW, Sydney, Australia
Contents

1 Introduction
 - Rare Event Simulation
 - Efficient Simulation for Sums of Random Variables

2 Efficient simulation of sums of dependent random variables
 - Scaled variance for sums of correlated lognormals
 - Conditional Monte Carlo for functions of logellipticals
 - Sums with general dependent heavy tails
Outline

1. Introduction
 - Rare Event Simulation
 - Efficient Simulation for Sums of Random Variables

2. Efficient simulation of sums of dependent random variables
 - Scaled variance for sums of correlated lognormals
 - Conditional Monte Carlo for functions of logellipticals
 - Sums with general dependent heavy tails
Rare Events

Indexed family of events \(\{A_u : u \in \mathbb{R}\} \) with

\[
P(A_u) \to 0, \quad u \to \infty.
\]

Probabilities difficult to estimate.

Algorithm (Estimator)

Indexed set of simulatable random variables \(\{Z_u : u \in \mathbb{R}\} \) with

\[
\mathbb{E}(Z_u) = P(A_u)
\]
Rare Events

Indexed family of events \(\{ A_u : u \in \mathbb{R} \} \) with

\[
P(A_u) \rightarrow 0, \quad u \rightarrow \infty.
\]

Probabilities difficult to estimate.

Algorithm (Estimator)

Indexed set of simulatable random variables \(\{ Z_u : u \in \mathbb{R} \} \) with

\[
\mathbb{E} [Z_u] = P(A_u)
\]
Efficiency

Efficient Algorithms

- **Logarithmic Efficiency:**

 \[
 \lim_{u \to u_0} \frac{\text{Var}[Z_u]}{P^2 - \epsilon(A_u)} = 0, \quad \forall \epsilon > 0.
 \]

- **Bounded relative error:**

 \[
 \lim_{u \to \infty} \frac{\text{Var}[Z_u]}{P^2(A_u)} < \infty.
 \]

- **Zero Relative Error:**

 \[
 \lim_{u \to \infty} \frac{\text{Var}[Z_u]}{P^2(A_u)} = 0.
 \]
Efficiency

Efficient Algorithms

- **Logarithmic Efficiency:**
 \[
 \lim_{u \to u_0} \frac{\text{Var}[Z_u]}{\mathbb{P}^{2-\epsilon}(A_u)} = 0, \quad \forall \epsilon > 0.
 \]

- **Bounded relative error:**
 \[
 \lim_{u \to \infty} \frac{\text{Var}[Z_u]}{\mathbb{P}^2(A_u)} < \infty.
 \]

- **Zero Relative Error:**
 \[
 \lim_{u \to \infty} \frac{\text{Var}[Z_u]}{\mathbb{P}^2(A_u)} = 0.
 \]
Efficiency

Efficient Algorithms

- Logarithmic Efficiency:

\[
\lim_{u \to u_0} \frac{\text{Var}[Z_u]}{P^{2-\epsilon}(A_u)} = 0, \quad \forall \epsilon > 0.
\]

- Bounded relative error:

\[
\lim_{u \to \infty} \frac{\text{Var}[Z_u]}{P^2(A_u)} < \infty.
\]

- Zero Relative Error:

\[
\lim_{u \to \infty} \frac{\text{Var}[Z_u]}{P^2(A_u)} = 0.
\]
Why?

Approximated confidence interval for an MC estimator \hat{Z}_u is

$$\hat{Z}_u \pm \Phi(1 - \alpha/2) \sqrt{\frac{\text{Var} \, Z_u}{R}}$$

To keep the interval proportional to $\mathbb{P}(A_u)$ we require

$$R \approx \frac{\text{Var} \, \hat{Z}_u}{\mathbb{P}^2(A_u)}.$$
Why?

Approximated confidence interval for an MC estimator \hat{Z}_u is

$$\hat{Z}_u \pm \Phi(1 - \alpha/2) \sqrt{\frac{\text{Var} Z_u}{R}}$$

To keep the interval proportional to $\mathbb{P}(A_u)$ we require

$$R \approx \frac{\text{Var} \hat{Z}_u}{\mathbb{P}^2(A_u)}.$$

How?

Variance reduction techniques.
Outline

1. Introduction
 - Rare Event Simulation
 - Efficient Simulation for Sums of Random Variables

2. Efficient simulation of sums of dependent random variables
 - Scaled variance for sums of correlated lognormals
 - Conditional Monte Carlo for functions of logellipticals
 - Sums with general dependent heavy tails
Tail probabilities of sums

Tail probability of a sum
Let X_1, \ldots, X_n. Tail probability of the sum

$$\mathbb{P}(X_1 + \cdots + X_n > u), \quad u \to \infty.$$

Common Fact: i.i.d. case.
An importance sampling algorithm with exponential change of measure

$$F_\theta(dx) := e^{-\theta x - \kappa(\theta)} F(dx)$$

produces an efficient algorithm if θ is such that $\mathbb{E}_\theta[X] = u/n$.

Leonardo Rojas Nandayapa
Efficient rare-event simulation for sums of dependent random variables
Tail probabilities of sums

Tail probability of a sum
Let X_1, \ldots, X_n. Tail probability of the sum

$$
\mathbb{P}(X_1 + \cdots + X_n > u), \quad u \to \infty.
$$

Common Fact: i.i.d. case.
An importance sampling algorithm with exponential change of measure

$$
F_\theta(dx) := e^{-\theta x - \kappa(\theta)} F(dx)
$$

produces an efficient algorithm if θ is such that $\mathbb{E}_\theta[X] = u/n$.
Right tail probabilities of sums

Fact

Severe difficulties occur in the construction of efficient algorithms in presence of heavy tails (Asmussen et al., 2000).

Heavy Tails

The Laplace transform (mgf) is not defined for a heavy-tailed random variable X.
Right tail probabilities of sums

Fact

Severe difficulties occur in the construction of efficient algorithms in presence of heavy tails (Asmussen et al., 2000).

Heavy Tails

The Laplace transform (mgf) is not defined for a heavy-tailed random variable X.
Heavy-tailed independent random variables

- Asmussen and Kroese (2006). A refined version which is proved to be efficient in the Lognormal and Weibull case.
- Dupuis et al. (2006). Importance sampling algorithm for regularly varying distributions and based on mixtures.
Literature Review

Our contribution: Non-independent case (this talk)

Related papers

Our contribution: Non-independent case (this talk)

Related papers

Another interesting problem

Current work with S. Asmussen and J.L. Jensen.

Efficient estimation of

$$\mathbb{P}(X_1 + \cdots + X_n < nx), \quad x \to 0.$$

- Exponential Twisting.
- Main difficulty: approximate the Laplace transform.
- Bounded relative error.
Outline

1. Introduction
 - Rare Event Simulation
 - Efficient Simulation for Sums of Random Variables

2. Efficient simulation of sums of dependent random variables
 - Scaled variance for sums of correlated lognormals
 - Conditional Monte Carlo for functions of logellipticals
 - Sums with general dependent heavy tails
Exploratory analysis

Correlated Lognormals

Normal density contour

Lognormal density contour
Asmussen et al. (2009)

Use the importance sampling distribution

$$\text{LN}(\mu, \delta(x)\Sigma)$$

where $\delta(x)$ is the scaling function.

1. Under very mild conditions of $\delta(x)$: logarithmically efficient.
2. Cross-entropy selection: excellent numerical results
Introduction
Efficient Simulation of Sums
References

Scaled variance algorithm

Asmussen et al. (2009)
Use the importance sampling distribution

\[\text{LN}(\mu, \delta(x)\Sigma) \]

where \(\delta(x) \) is the scaling function.

1. Under very mild conditions of \(\delta(x) \): logarithmically efficient.
2. Cross-entropy selection: excellent numerical results
1. Introduction
 - Rare Event Simulation
 - Efficient Simulation for Sums of Random Variables

2. Efficient simulation of sums of dependent random variables
 - Scaled variance for sums of correlated lognormals
 - Conditional Monte Carlo for functions of logellipticals
 - Sums with general dependent heavy tails
Elliptical Distributions

Definition

X is elliptical, denoted $E(\mu, \Sigma)$, if

$$X \overset{d}{=} \mu + RC \Theta.$$

- **Location**: $\mu \in \mathbb{R}^n$.
- **Dispersion**: $\Sigma = CtC$ with $C \in \mathbb{R}^{n \times k}$.
- **Spherical**: Θ uniform random vector on the unit spheroid.
- **Radial**: R positive random variable.
- R and Θ independent of each other.
Elliptical Distributions

Definition

\(\mathbf{X} \) is elliptical, denoted \(E(\mu, \Sigma) \), if

\[
\mathbf{X} \overset{d}{=} \mu + \mathbf{R} \mathbf{C} \Theta.
\]

- **Location**: \(\mu \in \mathbb{R}^n \). **Dispersion**: \(\Sigma = \mathbf{C}^t \mathbf{C} \) with \(\mathbf{C} \in \mathbb{R}^{n \times k} \).
- **Spherical**: \(\Theta \) uniform random vector on the unit spheroid.
- **Radial**: \(\mathbf{R} \) positive random variable.
- \(\mathbf{R} \) and \(\Theta \) independent of each other.
Elliptical Distributions

Example

Logelliptical distributions
- Multivariate Normal.
- Normal Mixtures.
- Symmetric Generalized Hyperbolic Distributions: Hyperbolic Distributions, Multivariate Normal Inverse Gaussian (NIG), Generalized Laplace, Bessel or Symmetric Variance-Gamma, Multivariate t.

The Symmetric Generalized Hyperbolic Distributions offer better adjustments than the multivariate normal distributions in financial applications (McNeil et al., 2005).
Elliptical Distributions

Example

Logelliptical distributions
- Multivariate Normal.
- Normal Mixtures.
- Symmetric Generalized Hyperbolic Distributions: Hyperbolic Distributions, Multivariate Normal Inverse Gaussian (NIG), Generalized Laplace, Bessel or Symmetric Variance-Gamma, Multivariate t.

The Symmetric Generalized Hyperbolic Distributions offer better adjustments than the multivariate normal distributions in financial applications (McNeil et al., 2005).
Heavy Tails and Log-elliptical distributions

Log-elliptical Distributions

The exponential transformation (component-wise) of an elliptical random vector is known as *logelliptical*. Commonly the marginals are dependent heavy-tailed random variables.

Example

Sum of Logellipticals

\[G(r, \theta) = \sum_{i=1}^{d} \exp (\mu_i + r\langle A_i, \theta \rangle) . \]
Conditional Monte Carlo

Estimator

An unbiased estimator of $\mathbb{P}(G(R, \Theta) > u)$ is

$$\mathbb{P}(G(R, \Theta) > u | \Theta).$$

Algorithm

- Simulate Θ.
- Determine $B_\Theta := \{r > 0 : G(r, \Theta) > u\}$.
- Return $\mathbb{P}(R \in B_\Theta)$.
Conditional Monte Carlo

Estimator

An unbiased estimator of \(\mathbb{P}(G(R, \Theta) > u) \) is

\[
\mathbb{P}(G(R, \Theta) > u | \Theta).
\]

Algorithm

1. Simulate \(\Theta \).
2. Determine \(B_\Theta := \{ r > 0 : G(r, \Theta) > u \} \).
3. Return \(\mathbb{P}(R \in B_\Theta) \).
Case 1: Sums of logelliptical random variables

Logarithmic efficient if

$$\lim_{r \to \infty} \frac{r f_R(r)}{\mathbb{P}(R > r)^{1-\varepsilon}} = 0 \quad \forall \varepsilon > 0.$$

f_R is the density of F
Efficient for more general functions

Conditions

- G is continuous in the two variables and differentiable in r.
- There exists $\delta_0 > 0$, $s_* \in S_d$, $r_0 > 0$ and $\nu > 0$ such that for all $0 < \delta \leq \delta_0$ and all $r > r_0$ it holds

$$\sup_{\theta \in S} G(r, \theta)^{1-\nu \delta} \leq \inf_{\theta \in \mathcal{D}(\delta, s^*)} G(r, \theta)$$

$$\sup_{\theta \in \mathcal{D}(\delta_0, s^*)} G(r, \theta) = \sup_{\theta \in S_d} G(r, \theta),$$

where $\mathcal{D}(\delta, s^*) = \{\theta \in S_d : \|\theta - s^*\| < \delta\}$.
- $0 < \delta_1 < 1$ chosen such that for all $r > r_0$ and $\theta \in \mathcal{D}(\delta, s^*)$ it holds

$$\delta_1 \leq \frac{d \log G(r, \theta)}{dr} \leq \frac{1}{\delta_1}.$$
Conditional Monte Carlo

Interesting cases where we have proved efficiency

Sums, maxima, norms and portfolios of options with Symmetric Generalized Hyperbolic Distributions.
Outline

1 Introduction
 - Rare Event Simulation
 - Efficient Simulation for Sums of Random Variables

2 Efficient simulation of sums of dependent random variables
 - Scaled variance for sums of correlated lognormals
 - Conditional Monte Carlo for functions of logellipticals
 - Sums with general dependent heavy tails
Exploratory analysis
Auxiliary IS distribution

- Set $b = \log(x/n)$.
- Take the distribution G_b of any efficient IS algorithm for

$$\mathbb{E} \left[\sum_{i=1}^{d} I(Y_i > b) \right].$$

- Use G_b as an IS distribution for estimating

$$\mathbb{P}(e^{Y_1} + \cdots + e^{Y_n} > x).$$
Efficiency

The last algorithm is efficient if

\[
\lim_{b \to \infty} \frac{\log \mathbb{P}(Y_i > b - c)}{\log \mathbb{P}(Y_i > b)} = 1.
\]

We say Y_i are Logarithmically Long Tailed.

Observation

This condition includes the most practical heavy-tailed distributions.
Efficiency

The last algorithm is efficient if

\[\lim_{b \to \infty} \frac{\log \mathbb{P}(Y_i > b - c)}{\log \mathbb{P}(Y_i > b)} = 1. \]

We say \(Y_i \) are \textit{Logarithmically Long Tailed}.

Observation

This condition includes the most practical heavy-tailed distributions.
Thanks!

