A general software tool for constructing rank-1 lattice rules

Lattice Builder

David Munger & Pierre L’Ecuyer

Département d'informatique et de recherche opérationnelle
Université de Montréal

MCQMC 2012 / February 13–17, 2012
Plan

1 Motivation

2 Features
 - Overview of the Current Features
 - Basic Usage
 - Advanced Usage
 - Usage for Research

3 Challenges and Solutions

4 Conclusion
How to Choose a Generating Vector?

Ideal Approach

1. Consider all possible generating vectors
2. Minimize the error or variance for our problem

Practical Approach

1. Narrow down the search space for generating vectors
2. Minimize a figure of merit representative of:
 - square error (QMC)
 - variance (RQMC)
 - others?

That is the purpose of Lattice Builder!
What Was Needed

Find Good Lattice Rules

- Ordinary and embedded lattices
- Figures of merit and weights adapted to one’s problem
- Any number of points and dimension, when needed
- Various construction methods
- Optional normalization and filters

Research Purposes

- Evaluate a figure of merit for a lattice
- Compare performance of algorithms
- Distribution of values of a figure of merit
- Correlation between two figures of merit
What Was Already Out There

Using Lattice Rules

- SSJ simulation library (Java)
- John Burkardt (C++, Fortran, Matlab)
- Christiane Lemieux’s QMC Library (C)
- Dirk Nuyens’ McInt for lattice sequences (C++)

Tables of Generating Vectors

- Published papers
- Authors’ websites (Kuo)
What Was Already Out There

Constructing

Dirk Nuyens’ Matlab Code

- Fast CBC construction
- Product weights
- Order-dependent weights
- Ordinary and embedded lattices
Lattice Builder Features

Input Parameters

<table>
<thead>
<tr>
<th>Lattice type</th>
<th>ordinary and embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of points</td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td></td>
</tr>
<tr>
<td>Figures of merit</td>
<td>$P_{2\alpha}$, spectral (sum or max)</td>
</tr>
<tr>
<td>Weights</td>
<td>product, order-dependent, projection-dependent, POD (planned)</td>
</tr>
<tr>
<td>Construction</td>
<td>exhaustive, random, (random) Korobov, (random) CBC, fast CBC</td>
</tr>
<tr>
<td>Normalizations</td>
<td>bounds on the average for $P_{2\alpha}$</td>
</tr>
<tr>
<td>Filters</td>
<td>low-pass</td>
</tr>
<tr>
<td>Combining</td>
<td>for multiple embedded levels: sum or max</td>
</tr>
</tbody>
</table>
Command-Line Example

latbuilder
 --lattice-size ordinary:1021
 --dimension 7
 --merit sum:spectral
 --weights product:0.1:1.0,0.7,0.3
 --construction CBC

Output

LatDef(1021, [1, 96, 496, 81, 298, 354, 37]): 6.15564
CPU time: 0.41784 seconds
Lattice Size and Dimension

Ordinary Lattices

```--lattice-size ordinary:1021
--dimension 7```

**Embedded Lattices**

```--lattice-size embedded:2^8
--dimension 7```

(Complete example later...)
Weighted Figure of Merit

Weighted Spectral Merit

\[\text{--merit \ max:spectral} \]

\[\max_{\emptyset \neq u \subseteq \{1, \ldots, s\}} \gamma_u \left[\bar{\mathcal{L}}_u(P_n) \right] \]

- \(u \) set of coordinates \(\rightarrow \) projection
- \(\gamma_u \) projection-dependent weights
- \(\bar{\mathcal{L}}_u(P_n) \) normalized maximum distance between two successive parallel hyperplanes
Weighted Figure of Merit

Weighted $P_{2\alpha}$ Discrepancy With $\alpha = 1$

\[
\text{--merit sum:} P_2 = \sum_{\emptyset \neq \mathbf{u} \subseteq \{1, \ldots, s\}} \gamma_{\mathbf{u}} \left[\frac{1}{n} \sum_{i=0}^{n-1} \prod_{j \in q} 2\pi^2 B_2(u_{i,j}) \right]
\]

B_2 Bernoulli polynomial of the second degree

$u_{i,j}$ j-th coordinate of the i-th point in P_n
Weights

Product Weights

```
--weights product:0.1:1.0,0.7,0.3

\gamma_u = \prod_{j \in u} \gamma_j

\gamma_1 = 1.0
\gamma_2 = 0.7
\gamma_3 = 0.3
\gamma_4 = \cdots = \gamma_7 = 0.1
```
Component-By-Component (CBC)

---construction CBC

- Given the first $s - 1$ components of a, minimize the figure of merit with respect to the s-th component in

$$U_n = \{i \in \{1, \ldots, n - 1\} : \gcd(i, n) = 1\}.$$

- Do so for $s = 1, \ldots, s_{\text{max}}$.

Specialized Computation of the Figure of Merit

Specialized Computation of $P_{2\alpha}$

<table>
<thead>
<tr>
<th>--merit</th>
<th>sum: CS-P2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>algorithm</th>
<th>add s-th component</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic</td>
<td>$O(2^s sn)$</td>
</tr>
<tr>
<td>proj.-dep.</td>
<td>$O(2^s n)$</td>
</tr>
<tr>
<td>order-dep.</td>
<td>$O(sn)$</td>
</tr>
<tr>
<td>product</td>
<td>$O(sn)$</td>
</tr>
<tr>
<td>POD</td>
<td></td>
</tr>
</tbody>
</table>

For product and order-dependent weights:

(Takes advantage of the symmetries in D^2.)
Selective Random CBC

Perform a random CBC construction with 10 random samples per component of the generating vector, such that the normalized weighted P_2 value is smaller than unity. Minimizes the filtered, normalized merit values.

```
latbuilder
   --lattice-size  ordinary:1021
   --dimension  7
   --merit  sum:CS-P2
   --weights  product:0.1:1.0,0.7,0.3
   --construction  random-CBC:10
   --filters  norm:P2-DPW08  low-pass:1.0
```

Embedded Lattices

Extending a Lattice

- Start with points for \(n = 2^6 = 64 \).

- Keep the same points; add \(n = 2^6 = 64 \) new points to obtain a new lattice rule with \(n = 2^7 = 128 \) points.

- Keep the old and the new points; add \(n = 2^7 = 128 \) new points to obtain a new lattice rule with \(n = 2^8 = 256 \) points.
Fast CBC for Embedded Lattices

Perform a fast CBC construction for embedded lattices with a maximum of 2^{20} points, keeping only candidates for which the normalized weighted P_2 value for each embedded level from $n = 2^8$ through 2^{20} is smaller than unity. A weighted sum of the normalized merit values for each level is minimized.

```
latbuilder
    --lattice-size embedded:2^20
    --dimension 7
    --merit sum:CS-P2
    --weights product:0.1:1.0,0.7,0.3
    --construction fast-CBC
    --filters norm:P2-DPW08:8:20 low-pass:1.0 combiner:sum

LatDef(2^20, [1, 444567, 292089, 375177, 58809, 241003, 36985]): 0.00347515
CPU time: 3.95632 seconds
```
Distribution of P_2 Values

Quantiles for all lattices with components coprime with n.

David Munger & Pierre L'Ecuyer Lattice Builder
How Good Is CBC?

CBC and random CBC.

CBC (best)

R-CBC (r = 10)

R-CBC (r ≈ log n)

10 %

CBC and random CBC.
Support Projection-Dependent Weights

Fast CBC

- Fast CBC
- Recursive evaluation of the figure of merit, e.g., Cools, Kuo & Nuyens (2006)
 - Reuse results from lower dimensions
Support Projection-Dependent Weights
Where recursive evaluation does not apply

- Sums over all projections \rightarrow large number of terms
- Avoid complete evaluation of sums over all projections when possible
Flexibility with Performance

Challenges

- Support different:
 - Figures of merit
 - Types of weights
 - Construction methods
 - Lattice types
 - Normalizations
 - Filters

- Allow for extensions
- Maintain good performance
- Avoid duplication of code
Flexibility with Performance

Solutions

- Decoupled components:
 - Figures of merit
 - Types of weights
 - Construction methods
 - Lattice types
 - Normalizations
 - Filters

- Code generation through C++ templates:
 - Faster than polymorphism: displace work from runtime to compile time
 - Less restrictive than polymorphism, e.g. operations on scalar vs. vector data with the same syntax embedded)
Other Challenges

Fast CBC vs. Others

- **Fast CBC**: all merit values computed simultaneously
- **Others**: evaluate only when necessary
- **Solution**: hide computation in iterators to do only the necessary work

Other Challenges

- Enumerate integers coprime with n without repeating coprimality check
- Reduce search space when figure of merit symmetric under $a_j \leftrightarrow n - a_j$
- Flexible assignment of the weights \rightarrow parsers for weights
- Take advantage of CBC optimizations even with non-CBC
Search for good lattice rules with specific input parameters for RQMC integration.

Analyze and compare algorithms and figures of merit for RQMC research.

What else are you interested in?