Calculation of the intermediate bound on the star discrepancy

Stephen Joe

Department of Mathematics
University of Waikato
Hamilton
New Zealand
Outline

Intermediate bound on the star discrepancy

Calculating \(F_n \)

Timing results
Intermediate bound on the star discrepancy

Let \(P_n(z) = \{ jz/n \}, j = 0, \ldots, n - 1 \) denote the \(n \)-point set of a rank-1 lattice rule with generating vector \(z \in \mathbb{Z}^d \).

Then the star discrepancy of this point set is given by

\[
D^*(P_n(z)) := \sup_{x \in [0,1)^d} \left| \text{discr}(x, P_n) \right|
\]

where \(\text{discr}(x, P_n) \) is the ‘local discrepancy’ given by

\[
\text{discr}(x, P_n) = \frac{|P_n(z) \cap [0, x)|}{n} - \text{Vol}([0, x)).
\]
At the previous MCQMC conference, an intermediate bound on the star discrepancy was introduced:

$$D^*(P_n(z)) \leq \frac{d}{n} + T(z, n) \leq \frac{d}{n} + W(z, n) \leq \frac{d}{n} + \frac{1}{2} R(z, n).$$

Though values of bound with $T(z, n)$ are better than with $R(z, n)/2$, calculation of $T(z, n)$ requires $O(n^2 d)$ operations compared to $O(nd)$ for $R(z, n)$.

Introduction of $W(z, n)$ resulted in bounds close to those obtained with $T(z, n)$, but with the operation count similar to that required to calculate $R(z, n)$.

CBC construction based on $W(z, n)$ results in $O(n^{-1} (\ln(n))^d)$ bound on star discrepancy for n prime.
This $W(z, n)$ is the lattice rule quadrature error in approximating the integral of $\prod_{i=1}^{d} F_n(x_i)$, where

$$F_n(x) = 1 + \frac{1}{n} \sum_{-n/2 < h \leq n/2, h \neq 0} G(|h|/n) e^{2\pi i h x}, \quad x \in [0, 1).$$

Here

$$G(x) = \begin{cases}
1/(\pi x) + \pi x/6 + 7\pi^3/2880 & \text{for } x \in (0, \kappa], \\
c_1 + c_2 x & \text{for } x \in (\kappa, 1/2],
\end{cases}$$

where $\kappa = 0.46$, with c_1 and c_2 chosen so that G is continuous at $x = \kappa$ and $G(1/2) = 1$.

Then $c_1 \approx 1.102449$, and $c_2 \approx -0.204898$.
Intermediate bound on the star discrepancy

Calculating F_n

Timing results

$1/\sin(\pi x)$

$G(x)$

$1/(2^x)$

Graph showing the functions $1/\sin(\pi x)$, $G(x)$, and $1/(2^x)$.
Intermediate bound on the star discrepancy

Calculating F_n

Timing results

$1/\sin(\pi x)$

$G(x)$

$1/(2^x)$

Graph showing functions $1/\sin(\pi x)$, $G(x)$, and $1/(2^x)$.
Calculating F_n

Since components of points of a rank-1 lattice rule are of the form j/n for $j = 0, \ldots, n - 1$, we need the values of

$$F_n(j/n) = 1 + \frac{1}{n} \sum_{-n/2 < h \leq n/2 \atop h \neq 0} G(|h|/n) e^{2\pi i h j/n}, \quad j = 0, \ldots, n - 1.$$

For simplicity, let us assume n odd.

Because of symmetry, we may assume $j = 0, \ldots, \lfloor n/2 \rfloor$.
Then we may write

\[F_n(x) = 1 + 2S_n(x), \]

where

\[S_n(x) = \frac{1}{n} \sum_{h=1}^{(n-1)/2} G(h/n) \cos(2\pi hx). \]

Now let \(\alpha(n) = \lfloor \kappa n \rfloor + 1. \)

Then \(0 < h/n \leq \kappa \) for \(h = 1, \ldots, \alpha(n) - 1 \) and \(\kappa < h/n < 1/2 \) for \(h = \alpha(n), \ldots, (n - 1)/2. \)
So we may write

\[S_n(x) = \frac{1}{\pi} \sum_{h=1}^{\alpha(n)-1} \frac{\cos(2\pi hx)}{h} + \frac{\pi}{6n^2} \sum_{h=1}^{\alpha(n)-1} h \cos(2\pi hx) \]

\[+ \frac{7\pi^3}{2880n} \sum_{h=1}^{\alpha(n)-1} \cos(2\pi hx) \]

\[+ \sum_{h=\alpha(n)}^{(n-1)/2} \left(\frac{c_1}{n} + \frac{c_2 h}{n^2} \right) \cos(2\pi hx). \]

(This last sum is taken to be an empty sum of zero when \(n \) is odd and less than 13.)
Closed form expressions may be obtained for all the sums except the first one:

For integer $m \geq 2$ and $x \in (0, 1)$, we have

$$\sum_{h=1}^{m-1} \cos(2\pi hx) = \frac{\sin(m\pi x) \cos((m - 1)\pi x)}{\sin(\pi x)} - 1 := \sigma_1(x, m).$$

For the case $x = 0$, we set $\sigma_1(0, m) = m - 1$.

For integer $m \geq 2$ and $x \in (0, 1)$,

$$\sum_{h=1}^{m-1} h \cos(2\pi hx) = \frac{m \sin((2m - 1)\pi x)}{2 \sin(\pi x)} - \frac{1 - \cos(2m\pi x)}{4 \sin^2(\pi x)} := \sigma_2(x, m).$$

For the case $x = 0$, we set $\sigma_2(0, m) = (m - 1)m/2$.
We may then write

\[
S_n(x) = \frac{1}{\pi} \sum_{h=1}^{\alpha(n)-1} \frac{\cos(2\pi hx)}{h} + \frac{\pi}{6n^2} \sigma_2(x, \alpha(n)) + \frac{7\pi^3}{2880n} \sigma_1(x, \alpha(n)) \\
+ \frac{c_1}{n} \left[\sigma_1(x, (n-1)/2) - \sigma_1(x, \alpha(n)) \right] \\
+ \frac{c_2}{n^2} \left[\sigma_2(x, (n-1)/2) - \sigma_2(x, \alpha(n)) \right].
\]

It is clear that the time-consuming part of the calculation of \(S_n(j/n) \) is in calculating the values

\[
Y(j, \alpha(n)) := \sum_{h=1}^{\alpha(n)-1} \frac{\cos(2\pi hj/n)}{h}, \quad j = 0, \ldots, (n-1)/2.
\]

Now recall that \(F_n(j/n) = 1 + 2S_n(j/n) \).
We may modify the results in Joe and Sloan (1993) and obtain approximations to the values $F_n(j/n), j = 0, \ldots, (n - 1)/2$, such that they have absolute error no more than ε. These results are based on an asymptotic expansion.

If ℓ and L are positive integers satisfying

$$2 \leq \ell \leq \left(\frac{6n^2}{\pi^2} \right)^{1/3} \quad \text{and} \quad \frac{4(L + 1)!}{(2\kappa)^{L+2}(\ell - 1)^{L+2}\pi^{L+3}} \leq \varepsilon,$$ \hspace{1cm} \text{(1)}

then to approximate $F(j/n)$ to the required accuracy, $Y(j, \alpha(n))$ should be calculated directly using its definition for $j = 0, \ldots, \ell - 1$.

When \(j = \ell, \ldots, (n - 1)/2 \), \(Y(j, \alpha(n)) \) should be approximated by \(K(j/n) \), where

\[
K(x) = -\ln (2|\sin(\pi x)|) - \sum_{i=0}^{L} b_i(x) \cos (\pi [(2\alpha(n) + i - 1)x + (i + 1)/2]) .
\]

In this expression, \(b_0(x) = 1 / (2\alpha(n)|\sin(\pi x)|) \) and

\[
b_{i+1}(x) = \frac{-(i + 1)}{2(\alpha(n) + i + 1)|\sin(\pi x)|} b_i(x).
\]
Recall from (1) that ℓ and L satisfy

$$2 \leq \ell \leq \left(\frac{6n^2}{\pi^2}\right)^{1/3} \text{ and } \frac{4(L + 1)!}{(2\kappa)^{L+2}(\ell - 1)^{L+2}\pi^{L+3}} \leq \varepsilon.$$

As an example, the first equation here is satisfied with $\ell = 20$ when $n \geq 115$. Then the second equation is satisfied for $\varepsilon = 10^{-16}$ when $L = 15$. If $\varepsilon = 10^{-18}$, then we can take $L = 19$.

Then approximations to all the values $F(j/n)$, $j = 0, \ldots, (n - 1)/2$, may be obtained with an absolute error of at most ε using

$$O(\ell n) + O(L) \times ((n + 1)/2 - \ell) = O(n) \text{ operations.}$$
Timing results

These calculations of $W(z, n)$ were done on a machine with the following specifications:

Ubuntu 10.10

Linux 2.6.35-31-generic-pae SMP

Intel(R) Core(TM) i5-2300 CPU @ 2.80GHz

The value of L was 19.
Results for \(d = 10\) in seconds

<table>
<thead>
<tr>
<th>(n)</th>
<th>Using definition</th>
<th>Using fast method</th>
</tr>
</thead>
<tbody>
<tr>
<td>10007</td>
<td>1.104</td>
<td>0.032</td>
</tr>
<tr>
<td>20011</td>
<td>4.432</td>
<td>0.052</td>
</tr>
<tr>
<td>40009</td>
<td>17.505</td>
<td>0.096</td>
</tr>
<tr>
<td>80021</td>
<td>69.908</td>
<td>0.180</td>
</tr>
<tr>
<td>160001</td>
<td>280.510</td>
<td>0.360</td>
</tr>
<tr>
<td>320009</td>
<td>1155.316</td>
<td>0.752</td>
</tr>
</tbody>
</table>

Results for \(d = 20\) in seconds

<table>
<thead>
<tr>
<th>(n)</th>
<th>Using definition</th>
<th>Using fast method</th>
</tr>
</thead>
<tbody>
<tr>
<td>10007</td>
<td>1.112</td>
<td>0.036</td>
</tr>
<tr>
<td>20011</td>
<td>4.436</td>
<td>0.052</td>
</tr>
<tr>
<td>40009</td>
<td>17.513</td>
<td>0.112</td>
</tr>
<tr>
<td>80021</td>
<td>70.012</td>
<td>0.216</td>
</tr>
<tr>
<td>160001</td>
<td>284.450</td>
<td>0.432</td>
</tr>
<tr>
<td>320009</td>
<td>1156.500</td>
<td>0.880</td>
</tr>
</tbody>
</table>